Find the number of ordered pairs $(a,b)$ of integers satisfying:

- $1 \le a, b, \le 100$
- There exists an integer $d \ge 2$ such that $a^n + b^n +1$ is divisible by $d$ for all positive integers $n$.

Login to submit

**MathMash** Copyright 2018-2019 **Nayeemul Islam Swad**